

#### **Presentation Overview**

Research vessels at Scripps Project background and goals Science mission requirements Vessel particulars Hydrogen systems & fueling Emissions: Well-to-waves

## A zero-emission hydrogen fuel cell research vessel

Dr. Bruce Appelgate Associate Director, Scripps Institution of Oceanography 09 October 2018



DNV.GL







#### Research Vessel Robert Gordon Sproul

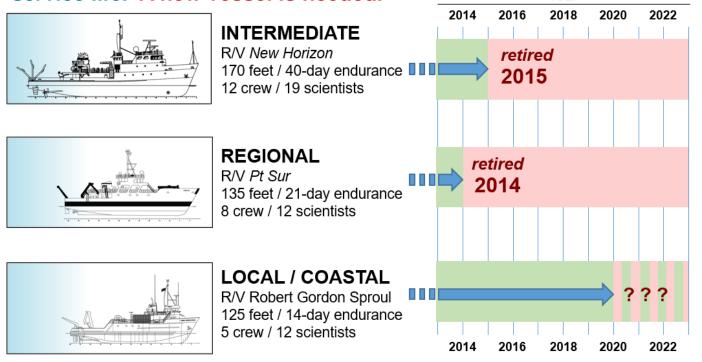
Built: 1981 Length: 125 feet (38 m) Crew: 5 Scientists: 12 Endurance: 14 days

Owner: UC










## **CALIFORNIA-BASED INTERMEDIATE CLASS & SMALLER SHIPS**

Research vessels able to carry out California's local research and education needs have decreased from 3 to 1, with the last remaining ship approaching the end of its service life. A new vessel is needed.

Needed

R/V ZERO-V



3

#### Ship Tracks 2009-2016 R/V Robert Gordon Sproul

P0907

SP0901

SPA91

Avila Beach

P1514

SP0907

SPAG



San Diego

Santa Barbara

SP0929 SP0923

Los Angeles

## **PROJECT BACKGROUND & GOALS**

Feasibility study: Is it possible to build a capable non-polluting coastal research vessel that does not use fossil fuels, with existing technology that is available commercially now?

#### **Zero-V Project Goals**

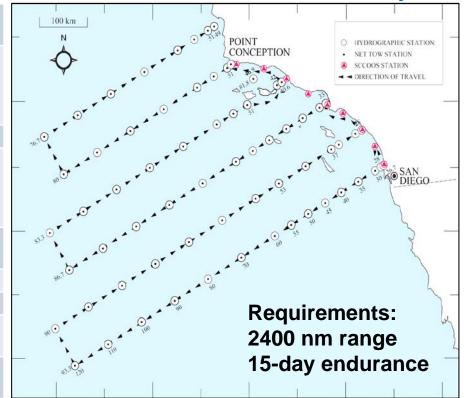
- Assess technical feasibility of LH2 fuel cell research vessel
- Evaluate technical feasibility of marine LH2 fuel cells
- Evaluate refueling feasibility
- Assess criteria pollutant and CO2 emissions
- Resolve the economics to build & operate
- Understand the regulatory framework
- Evaluate the ability of a hydrogen-powered vessel to fulfill desired scientific missions



DNV·GL








#### **ZERO-V SCIENCE MISSION REQUIREMENTS**

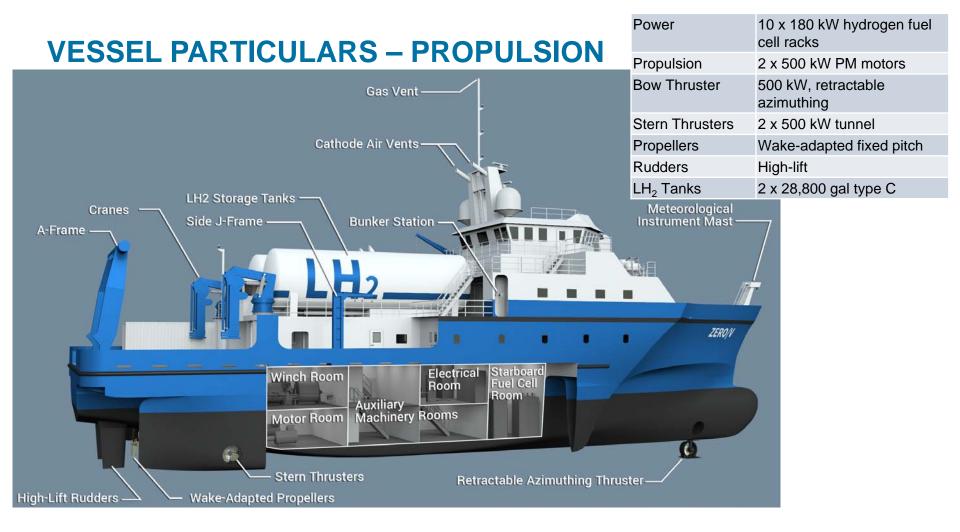
#### **Primary Vessel Requirements**

| Cruise          | 10 kts, calm<br>water                                      | Portable Vans    | 2                                     |
|-----------------|------------------------------------------------------------|------------------|---------------------------------------|
| Speed           | 12 kts, calm<br>water (sprint)<br>9 kts, SS4<br>7 kts, SS5 | Crew Berths      | 11                                    |
| Range           | 2400 nm                                                    | Scientist Berths | 20                                    |
| DP              | 2 kts beam<br>current, 25 kts<br>wind at best<br>heading   | A-Frame          | 12,000 ST SWL                         |
| Endurance       | 15 days                                                    | Main Crane       | 8,000 lbs @ 12' over the side         |
| Main Lab        | 800 sq ft                                                  | Portable Crane   | 4,000 lbs SWL                         |
| Wet Lab         | 500 sq ft                                                  | Side Frame       | 5,000 lbs SWL                         |
| Computer<br>Lab | 120 sq ft                                                  | Trawl Winch      | 10,000m 3/8 3x19                      |
| Aft Deck        | 1200 sq ft                                                 | Hydro Winch      | 10,000m 0.322 EM,<br>10,000m 1/4 3x19 |

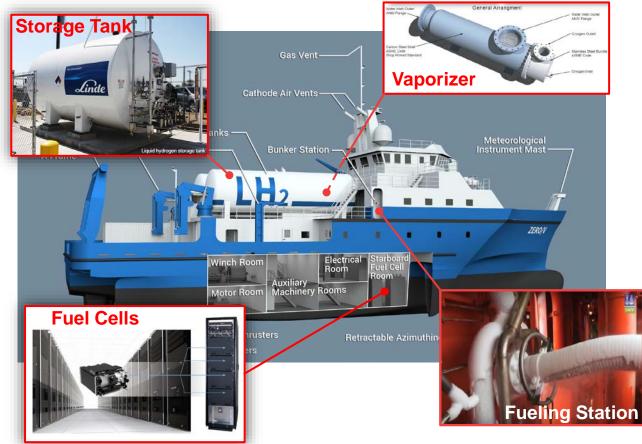
#### **Benchmark Mission: CalCOFI Survey**



#### **VESSEL PARTICULARS – GENERAL**




| Hull Type       | Trimaran                                |
|-----------------|-----------------------------------------|
| Material        | Aluminum                                |
| Length          | 170 ft.                                 |
| Beam            | 56 ft.                                  |
| Draft           | 12 ft.                                  |
| Freeboard       | 9 ft.                                   |
| Displacement    | 1,175 LT                                |
| Cruise Speed    | 10 knots                                |
| Range           | 2,400 nm                                |
| Endurance       | 15 days                                 |
| Station Keeping | Dynamic positioning                     |
| Berths          | 20 Science (double)<br>11 Crew (single) |
| Air Emissions   | Water vapor                             |


#### **VESSEL PARTICULARS – SCIENCE**



| A-Frame          | 20,000 lbs SWL<br>20' vertical clearance<br>12' outboard reach |
|------------------|----------------------------------------------------------------|
| Main Cranes (2)  | 8,000 lbs SWL over the side                                    |
| Portable Crane   | 8,000 lbs SWL                                                  |
| Side Frame       | 5,000 lbs SWL                                                  |
| Trawl Winch      | 10,000m 3/8 3x19 wire                                          |
| Hydro Winch      | 10,000m 0.322 EM<br>10,000m ¼″ 3x19 wire                       |
| Multi Beam Sonar | Kongsberg EM712                                                |
| Underwater Noise | ICES up 8 knots                                                |
| Main Lab         | 825 ft <sup>2</sup>                                            |
| Wet Lab          | 575 ft <sup>2</sup>                                            |
| Computer Lab     | 175 ft <sup>2</sup>                                            |
| Aft Deck         | 1,775 ft <sup>2</sup>                                          |
| Side Deck        | 525 ft <sup>2</sup>                                            |
| Van Spaces       | 2                                                              |
| Science Payload  | 50 LT                                                          |
|                  |                                                                |



## H<sub>2</sub> GAS SYSTEMS



- (2) Type C vacuum insulated LH<sub>2</sub> tanks (5,830 kg / tank)
- (10) Power racks with 6 Hydrogenics HyPM HD 30 fuel cell modules (180 kW/rack)
- (2) Thermax cryogenic cold water evaporators
- Gas system full redundancy
- Fuel cell room has redundant ventilation and gas detection for each rack and emergency shutdown upon any failure
- Water deluge system protects
  areas around tank
- NOVEC clean agent fire extinguishing in fuel cell rooms

## FUELING LIQUID HYDROGEN (LH<sub>2</sub>)





Fueling procedures were informed by commercial vendors

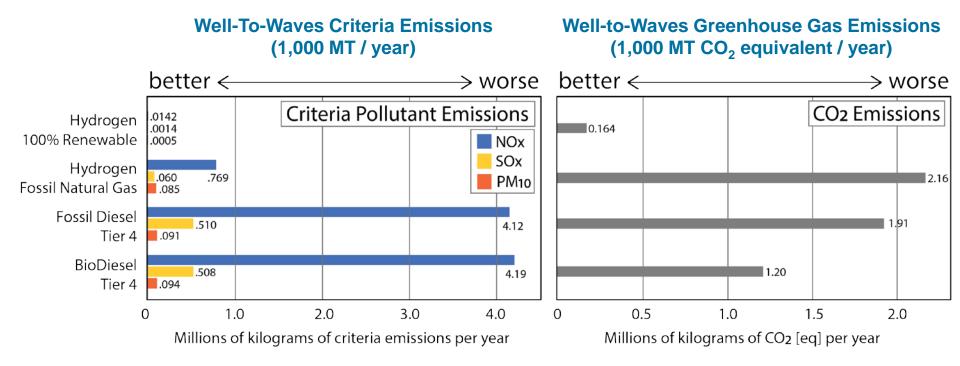
#### **Bunker from trucks**

- No shore infrastructure
- Currently used for filling LH<sub>2</sub> storage tanks across US
- Trailer delivers approximately 4,000 kg of  $LH_2$
- 3 trailers to fully fuel. Typical bunkering with 1-2 trailers (most missions <8,000 kg)</li>
- Full trailer deliver take 3.5 to 4 hours
- Use 2 trailers simultaneously, one bunkering each tank

## **REGULATORY REVIEW**

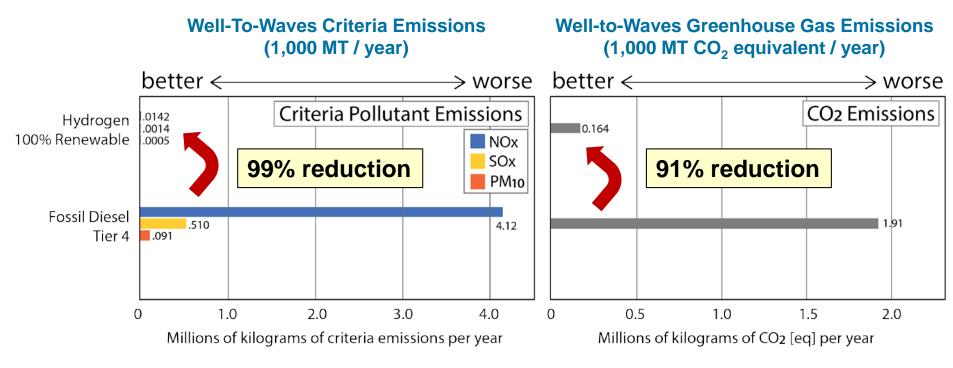
DNV.GL

#### STATEMENT OF CONDITIONAL APPROVAL IN PRINCIPLE


Glosten/Sandia National Laboratories Zero-V Hydrogen Research Vessel

This is to certify that Zero-V Hydrogen Research Vessel is granted Conditional Approval in Principle (CAIP).

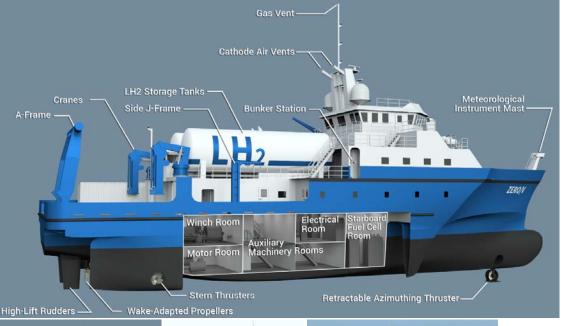
No show-stopping red flags were identified in the regulatory reviews Received a Conditional Approval In Principle (CAIP) from DNV GL.


- The regulatory regime for a hydrogen fuel cell powered vessel is developing
- No current US or international regulations specific to hydrogen fuel cell vessels
- Regulatory basis:
  - Extend the regulations applicable to LNG fueled vessels to hydrogen fuel
    - DNV GL Rules for Classification: Ships
    - IGF Code: International Code of Safety for Ships Using Gases or Other Low-Flashpoint Fuel
    - 46 CFR Subchapter U: Oceanographic Research Vessel
  - Give consideration to differences hydrogen may present.
- Submitted to the US Coast Guard and DNV GL for review to identify any significant regulatory or safety concerns with the fundamental design.

#### **EMISSIONS: WELL-TO-WAVES**



Criteria pollutant emissions can be reduced using  $LH_2$ . Dramatic reductions in GHG can be achieved with *renewable*  $LH_2$ . Renewable  $LH_2$  is available now from commercial gas suppliers.


#### **EMISSIONS: WELL-TO-WAVES**



Criteria pollutant emissions can be reduced using  $LH_2$ . Dramatic reductions in GHG can be achieved with *renewable*  $LH_2$ . Renewable  $LH_2$  is available now from commercial gas suppliers.

# A zero-emission research vessel is feasible NOW using existing technology









- Oceanographic research vessel for coastal / regional operations
- Uses clean hydrogen: No fossil fuels!
- Zero emissions: Clean / no GHGs!
- Carries no diesel: No oil spills!
- All-electric propulsion: Quiet!
- FEASIBLE with existing technology
- Outstanding scientific capabilities
- Advanced instrumentation
- Designed for California's educational and R&D needs

## **PROJECT RESULTS**

Feasibility study: Is it possible to build a capable non-polluting coastal research vessel that does not use fossil fuels, with existing technology that is available commercially now?

