Commercializing Hydrogen Technology in the Ports

Andreas Truckenbrodt Loop Energy Inc., Burnaby/Canada CHBC Port workshop | October 10, 2018

Must-haves for commercial SUCCESS of hydrogen technology in the ports

Customer & Market

Individual Value

\$\$\$

Competitive Advantage

Infrastructure

Society

Public Value

Customer & Market

Value to the individual

- What are tangible benefits of hydrogen/ zero-emission technology?
 - Clean good citizen ...
- Meet regulatory requirements
- Advantage over competitors
- Emotional appeal ?!

Public Value

9

Individual vs

Public Value

Individual vs

Public Value

Product

- Performance
 - Power
 - Range
 - Refill/recharge time
 - Weight
 - Fuel consumption
- Reliability and durability
 - Mean-Time-Between-Failures
 - Lifetime
- Safety
- Ease of operations
 - What operators are used to
 - No compromises
 - Simple

Competitive Advantage

- Diesel vs H2
 - \$, reliability, ease of operations
 - environmental impact
- LNG vs H2
 - improvement over Diesel, easy transition
 - not zero-emission

- Battery-electric vs H2
 - fuel efficiency
 - range, recharge, weight

Semi is the safest, most comfortable truck ever. Four independent motors provide maximum power and acceleration and require the lowest energy cost

 $< 2 \, kWh/mi$

Energy consumption

Tesla

Semi

Reserve now

Battery vs hydrogen tank

Tesla	Fuel Cell	Diesel	
500 miles			
2 kWh/mile		0.56 ltr Diesel/mile	
1,000 kWh		280 ltr	
1,000 kWh battery	60 kg H2	280 ltr Diesel	
5,000 kg	1,667 kg	280 kg	
	Tesla 2 k 1,000 kWh battery 5,000 kg	TeslaFuel Cell500 miles2 Wh/mile1,000 kWh1,000 kWh battery60 kg H25,000 kg1,667 kg	

Reduced payload!

Battery recharging vs hydrogen refueling

	charge power [kW]	charge time [hr] [min]	
Battery capacity 1000 kWh	1000	1	60
Level 3 charger	7.5	133	8000
Fast charger	50	20.0	1200
Tesla Supercharger	120	8.3	500
Porsche Fastcharger	350	2.9	171
1.5 MW charger	1500	0.67	40
Hydrogen refueling time	n/a	0.5	25

How much is

1.5 MW ?

Infrastructure

- Hydrogen production
- Hydrogen station
- Distribution of hydrogen to the users
- Sector and application coupling

lydrogen

\$\$\$

Profitable for customer AND manufacturer

- Customer perspective
 - Purchase price
 - Total cost of ownership
 - purchase price
 - fuel
 - maintenance
 - insurance
- Manufacturer perspective
 - Sufficient (positive !) margin

\$\$\$

Policy framework

- Subsidies
- Compliance cost
- Credits

Infrastructure business case

 H2 stations as a profitable business

There is no chicken-and-egg problem: Infrastructure investments are financially attractive and will happen - if enough vehicles and other hydrogen applications are around !

Customer & Market CRITICAL Individual Value

\$\$\$

cost reduction infrastructure business case

GOOD Competitive Advantage

over other ZE technologies

Infrastructure

distribution to users application coupling

Society GOOD Public Value

policy framework !

lifetime ease of operations

We are on a good path BUT Demos are not enough !

Thank you!

Dr. Andreas Truckenbrodt Loop Energy Burnaby, British Columbia, Canada

andreas.truckenbrodt@loopenergy.com

