

G R O U P In Partnership With

Wireless Advanced Vehicle Electrification

Top Loader Electrification Proposal for POLA Operations

Laurence Dunn Chief Engineer II 2018

Planned Fuel Cell Application

CLASS 1	CLASS 2	CLASS 3	CLASS 4	CLASS 5
Electric Counterbalanced Rider Trucks	Electric Narrow Aisle Trucks	Electric Hand Trucks	Internal Combustion Engine (cushion tire)	Internal Combustion Engine (pneumatic tire)
1.0T to 5.5T	1.5T to 6.0T	1.5T to 8.0T	1.0T to 7.0T	1.0T to 52.0T
Electric CB Wheel Electric Wheel Electric 4 wheel Electric	Warehouse Reach Trucks Order Pick Very Narrow Aisle Trucks	e Equipment Pallet Trucks kers kers Stackers	Counternal Combustion Engine	Big Trucks Reach Stackers Stackers Empty / Laden Container Handlers Forklifts
	Over 280 di	fferent truck m	odels availal	ble

Solutions that DRIVE Productivity

SIEK-YALE

MATERIALS HANDLING

п1

The Proposed Vehicle Conversion

Hyster's prototype platform Zero Emissions solution for Laden Container Handlers based on the H1150HD CH (H52XM-16CH)

Key characteristics:

- Load Capacity: 52 tons
- Vehicle weight: ~80 tons
- Lift height: 6 x 3 meter high containers
- 800 liter Diesel Fuel tank = 37 hours run time (assumes 40% efficiency)

Zero Emissions Benefits

- Environmental Improvements
 - Eliminate Fossil Fuel Emissions at all CA locations where ICE products are used
 - Powertrain Noise Elimination from Population areas
- Carbon Reduction per vehicle = 2.63 kg/l x liters used
 - the average fuel consumption of a top loader is around 16 L/hour => 42.7 kg/hour
 - 3000 h average per year => 128000 kg.
- Reduce the Cost of Operations
 - Lower Energy Costs
 - Target is > 35% Reduction
 - \$0.65/ kWh for Diesel vs \$0.15/ kWh for Electricity. (Note that Hydrogen is currently \$1.97/kWh)
 - Where possible use Energy Storage during Off Peak Hours
 - Reduced Maintenance
 - Electric Powertrain vs ICE Powertrain
 - Zero Maintenance Energy Storage Li-Ion Batteries
 - Wireless charging to eliminate Cable and Connector Repair
 - Higher Productivity
 - Less Vehicle Downtime due to Maintenance
 - Wireless Charging reduces refueling time by eliminating wired charger connection times typically 3-5 minutes per charge x 4 times per day x 3 shifts = 36 minutes / day/ truck Multiply that by the number of trucks in a fleet x the hourly rate of an operator

The Onboard Energy Storage Challenge

Current Diesel Storage vs the equivalent Electric:

- 800 liters of Diesel (= 800 x 9.7kW/l) = 7760 kWh
- 7760 kWh battery pack Lead Acid =114 m³, 291 metric tons. Li-lon =57 m³, 97 metric tons.

- Equivalent Hydrogen :
 - 800 liters of Diesel (= 800 x 33.3) = 233Kg H2
 - = 5.8 m³ @ 700bar.

Usable Diesel Storage vs the equivalent Electric:

- 800 liters of Diesel (= 800 x 9.7kWh/l) = 7760 kWh x 40% = 3104 kWh battery pack = to about 37 hours of runtime
- Lead Acid Battery = **46** m³, **116.4** metric tons.
- Li-lon Battery=22.8 m³, 38.8 metric tons.

The Onboard Energy Storage Challenge

> Battery Sizing for Typical usage:

20 Liters Diesel/ hour (= 20 x 4.2kWh/l)
 = 84 kWh x 8 hours = 672 kWh battery pack

- Only 80% of the battery energy is usable so capacity needs to be increased by another 20% = 800kWh
- Required Li-Ion Battery= 2.2 m³, 4.2 metric tons.

> Battery Sizing for the available space:

- Use the Highest Energy Density Li-Ion Chemistry = NMC
- Operating Voltage = 700 to 800 Volts
- Available Space= 1.1 m³, 2.1 metric tons = 400 kWh

H2 Storage for the available space:

• 20 Kg @350 bar with Battery reduced to 125kWh

WHAT IS NEEDED: Application specific truck configurations + Intelligent Design.

- Optimized Sizing of batteries and hydrogen system linked with Smart charging/Refill strategy
- Smart energy recovery for maximum efficiency

Operational challenge - Battery only

		E	Batter	y pa	ck ca	Icula	ation	mod	lel		Н	YSTER	-YALE
Inputs:												GRO	UP
Average energy consumption Opportunity charging Normal charging Annual operating hours	84 370 370 4500	[kW] [kW] [kW] [hr]	Average en Max charge Long term c	ergy consum rate during s harging rate	ption based o hort stops on for overnight	on continuo wireless ch / lunch brea	us driving acc arging system k charging	ording to pre (max. 15 mir	escribed patti n.)	ern, calculate	d in virtual mo	odel	
		19 6					Capacity	when New	Maxicharge	Max change	Min charge	Useable rar	ige NEW
Battery config Cycles to 80% capacity (EOL)	381.5 5000	[kWh]	Based on 9T battery configuration (1 pack is 28 kWh) 381.5 30% Based on 9T NMC type batteries Capacity when EOL							343.35 Max charge	76.3 267.05 je Minicharge UseablerangeEC		
C-rate	1		Rated C-rat	e for number	of cycles			305.2	80%	244.15	61.04	183.12	
Shift pattern Shift 1 Shift 2 Shift 3	Shift start 0 0	Drive 1 120 120	Break 1 90 90	Drive 2 120 120	Break 2 45 45	Drive 3 120 120	Break 3 30 30	Drive 4 0 0	Break 4 0 0	Drive 5 0 0	Shift End 0 0	Total min 525 525 0	Total hrs 8.75 8.75 0
% opportunity charging	10	[%]	Amount of ti	me available	during the dr	ive part of th	e shift						

Results:

 Number of shifts per day:
 2

 Working days per year
 281.25
 based on annual operating hours and number of shifts

Months before battery EOL: 53

		Shift start	Drive 1	Break 1	Drive 2	Break 2	Drive 3	Break 3	Drive 4	Break 4	Drive 5	Shift En
SOC prediction (NEW battery)	Shift 1	90%	46%	90%	46%	90%	46%	90%	90%	90%	90%	90%
	Shift 2	90%	46%	90%	46%	90%	46%	90%	90%	90%	90%	90%
	Shift 3	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
SOC prediction (EOL battery)	Shift 1	80%	25%	80%	25%	80%	25%	80%	80%	80%	80%	80%
	Shift 2	80%	25%	80%	25%	80%	25%	80%	80%	80%	80%	80%
	Shift 3	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%

Hydrogen and Fuel Cells in the Ports CA Hydrogen Business Council 2018

© 2018 Hyster-Yale Group. All rights reserved

HV

Severe duty operation

- Coffee and Lunch breaks used for charging
- Large battery pack for range,
- Low C-rate charge due to current primary power source and Battery Chemistry Limitations
- Periodic Maintenance for Diesel is 500 Hours
- Periodic Maintenance EV is 2000 Hours

Nuvera Fuel Cells

Experienced

25-year history innovating hydrogen and fuel cell technology

Established

Built with the investment and expertise of major global brands

- Arthur D. Little
- DeNora
- Hess
- Renault
- Hyster-Yale Group

Engaged

Certified

Fuel cells in realworld motive applications

• ISO 9001-2015

• ISO 14001-2015

• OHSAS 18001

Nuvera technology powers some Hyster-Yale Group industrial vehicle products

This strategic partnership with HYG provides Nuvera:

Global reachFinancial strength

1993

- Strategic vision
 OEM-focus
- Unique capabilities

2018

Generations of Fuel Cell Innovation

Hydrogen and Fuel Cells in the Ports CA Hydrogen Business Council 2018

© 2018 Hyster-Yale Group. All rights reserved

Fuel Cell Engines for Electric Top Loader (ETL)

Fuel Cell Engines for ETL 90 kW total (2 x 45 kW net) Scale existing technology

Nuvera Tasks Overview

- Engine Requirements
- Component Scaling (Prototype v1)
- Integrated Engine (Prototype v2)
- Vehicle Engine Delivery
- Support Vehicle Integration
- Support Pre-Demonstration Activities
- Support Demonstration

June 2018 Status Deliverable

- ✓ Engine requirements summary complete
- ✓ Prototype v1 design complete
- ✓ Prototype v1 components received/complete
- ✓ Prototype v1 build complete
- ✓ Prototype v1 testing in process (on schedule)
- ✓ Prototype v2 activity in process (on schedule)

The Hydrogen Supply (1st Solution)

- Hydrogen is brought in by tanker but fuel needs to be transferred to storage vehicle with compressor that is in a fixed location
- Complete refuel in 15 minutes but Forklift could need to be driven up to 1.21 Km (0.75) miles to refuel

The Hydrogen Supply (2nd Solution)

- Compressed Hydrogen is delivered to wherever the truck is located. (same as current Diesel delivery)
- The refueler capacity needs to be doubled to meet Energy demand

11

Operational challenge – Battery + Fuel Cell

		E	Batter	y pa	ck ca	lcula	ation	mod	el		н	YSTER	-YALE		
Inputs:												GROU	J P		
Average energy consumption Opportunity charging Normal charging Annual operating hours	84 0 120 4500	[KW] [KW] [KW] [hr]	Average ene Max charge Long term cl	ergy consum rate during s harging rate	ption based o hort stops on for overnight	on continuo wireless ch / lunch brea	us driving acc arging system k charging	ording to pre (max. 15 mir	scribed patte .)	ern, calculate	d in virtual mo	odel			
							Capacity (rhen Ner	Max charge	Max charge	Min charge	Useable ran	ge NEM		
Battery config	112	[kWh]	Based on 91	f battery con	figuration (1 p	ack is 28 kV	/h)	112	30%	100.8	22.4	78.4			
Cycles to 80% capacity (EOL)	5000		Based on 91	「NMC type b	atteries		Capacity	when EOL		Max change	Min charge	arge Useable range EOL			
C-rate Fuel Cell	1 80	[kW]	Rated C-rate	Rated C-rate for number of cycles 89.6 80% 71.68							17.92	53.76			
Shift pattern	Shift start	Drive 1	Break 1	Drive 2	Break 2	Drive 3	Break 3	Drive 4	Break 4	Drive 5	Shift End	Total min	Total hrs		
Shift 1	0	120	30	120	60	120	30	0	0	0	0	480	8		
Shift 2	0	120	30	120	60	120	30	0	0	0	0	480	8		
Shift 3	0	0	0	0	0	0	0	0	0	0	0	0	0		

Results:

CA Hydrogen Business Council 2018

© 2018 Hyster-Yale Group. All rights reserved

Severe duty operation

- Added 90 kW Fuel Cell
- Reduced Battery Pack to 112kWh
- Periodic Maintenance on Fuel cell is 200 hours (Filter changes)

Closing remarks

Heavy Duty:

We now have technologies that can make zero emissions work for heavy applications but each has its limitations using current Battery and Fuel Cell Technology. A combination of technologies is required to achieve the required runtimes for the various Port duty cycles.

Reliable/Dependable:

Component development is at a stage that an electrical drivetrain is on a par, or better, performance wise, than an internal combustion engine but Fuel Cell reliability is still a work in progress

Total Cost of Ownership:

Return on investment is about 1.5 years for Electric Big Trucks and it's supporting infrastructure using pure Battery Operation through

- Reduced maintenance
- Lower Li-lon costs
- Lower Energy costs

Projected return on investment is about 2.5 years for the addition of a fuel cell and it's supporting infrastructure.

Industry is really looking to Zero emissions and ready to invest in the infrastructure to support it

Close cooperation on vehicle AND infrastructure is needed

Thank you for your attention Questions?