

Hydrogen and Fuel Cells in Ports and Shipping Workshop Towards Zero Emission Port Container Operations Port of Los Angeles – California 10th October 2018

- 1. Valencia Port Introduction
- 2. Decarbonisation Experiences in Port Container Operations
 - Liquefied Natural Gas
 - Electrification
- 3. Next Step: Hydrogen
- 4. Conclusions

- 1. Valencia Port Introduction
- 2. Decarbonisation Experiences in Port Container Operations
 - Liquefied Natural Gas
 - Electrification
- 3. Next Step: Hydrogen
- 4. Conclusions

Valenciaport Cluster 2017

World and Europe TEU Volume Ranking 2017

1st Shanghai (40.2 M) 2nd Singapore (33.6 M) 3rd Shenzhen (25.2 M)

11 th	Rotterdam	(13.6 M)
		(/

17th Los Angeles (9.3 M)

21st Long Beach (7.5 M) 22nd New York (6.3 M)

26th Bremerhaven (5.5 M)

Ranking	Port	Country	2016	2017	%
1	Rotterdam	The Netherlands	12,38	13,73	10,9
2	Antwerp	Belgium	10,03	10,45	4,19
3	Hamburg	Germany	8,90	8,80	-1,12
4	Bremen	Germany	5,53	5,50	-0,54
5	Valencia	Spain	4,73	4,83	2,11
6	Algeciras	Spain	4,76	4,38	-7,98
7	Duisburg	Germany	3,70	4,10	10,81
8	Piraeus	Greece	3,67	4,06	10,63
9	Felixstowe	UK	4,01	4,01	0,00
10	Tanger Med	Morocco	2,96	3,31	11,82

29th Valencia (4.78 M)

- 1. Valencia Port Introduction
- 2. Decarbonisation Experiences in Port Container Operations
 - Liquefied Natural Gas
 - Electrification
- 3. Next Step: Hydrogen
- 4. Conclusions

30,145,399 kWh (30.1 GWh)

6,986,564 L

Carbon Footprint (Fuel): **11.7 Kg CO2eq / TEU**

LNG TERMINAL TRACTOR PROTOTYPE

LNG Terminal Tractor Prototype Design Requirements

- 1. Valencia Port Introduction
- 2. Decarbonisation Experiences in Port Container Operations
 - Liquefied Natural Gas
 - Electrification
- 3. Next Step: Hydrogen
- 4. Conclusions

Full Electrical Tractor

Batteries

Traction battery capacity 206[kWh] Traction battery type Lithium Iron Phosphate Nominal voltage 299 [V] (260-380 Volt) Current 700Ah

Driveline

Power/torque 160/180 hp @ 1800-2800 RPM 633/712 Nm @0-1800 RPM

Autonomy

6 hours (1 operational shift)

Recharging Time

Between 3-5 hours (depending on plug type)

LNG vs Electrification

LNG Terminal Truck

Refuelling time similar to Diesel Equipment cost similar to Diesel LNG availability Less Autonomy than Diesel Not Zero-Emission solution

Full Electric Terminal Truck

Zero-Emission solution Electricity price lower than Diesel Charging time higher than Diesel refuelling Low autonomy (less than 6 hours) Equipment cost much higher than Diesel

- 1. Valencia Port Introduction
- 2. Decarbonisation Experiences in Port Container Operations
 - Liquefied Natural Gas
 - Electrification
- 3. Next Step: Hydrogen
- 4. Conclusions

Towards Zero-Emission Port Operations

Hydrogen Fuel Cell Reach Stacker and Yard Truck

Location: MSC Container Terminal Valencia

Fleet Fuel Consumption: 2 Mio L / year

Operational Time: 5,000 h (2 years)

Fuel Cell Power Range: 90-120 kW Reach Stacker

60-80 kW Yard Truck

Benefits:

- Local zero emissions and powertrain noise;
- Reduced vehicle maintenance costs with the elimination of the engine, transmission and other mechanical-driven components;
- Downsizing of the battery pack, keeping an autonomy of 8 hours ;

• Improved total energy consumption with electrification of the powertrain and energy recovery through regenerative braking/load management.

Open Questions

Hydrogen supply logistics: supply vs on-site production

Compatibility with port operations: autonomy, performance

User's acceptance: terminal operator and stevedoring

Port Regulatory Framework: new alternative fuel

Safety procedures: refuelling, tank pressures

City perception

Conclusions

- Port container operations can (and must) be decarbonised: electrification and low carbon / zero-emission fuels;
- This task is challenging: not all port operators are prepared for making the transition towards zero-emission solutions;
- There are knowledge and awareness gaps in the port industry about zeroemission alternatives. Need to bridge the gaps with successful stories;
- Need for cooperative innovation among technology providers and end users;
- Financial feasibility and short pay-backs are critical factors for real implementation of disruptive technologies (like Hydrogen).

José Andrés Giménez - Port Energy and Safety Director jagimenez@fundacion.valenciaport.com www.fundación.valenciaport.com